Effects of simulation on radiographers’ critical thinking skills, self-efficacy, and clinical competence

Jennifer G. Chiu, Ed.D., MBA, RT(R)
St. John’s University
AEIRS 2013 Annual Meeting
Salt Lake City, UT
July 2013

Objectives

At the completion of this session the participant will be able to:

• Discuss the paradigm shift in healthcare education – Use of simulation
• Identify the need for simulation training as a learning method.
• Develop methods for increasing critical thinking skills, and self-efficacy of radiologic science students during simulation.
• Analyze components of a radiography program in relation to developing the competency skills of students.
• Describe the key operational components of a simulation enhanced activity.

Introduction

• It is estimated that 98,000 patients each year die as a result of medical errors making it the fifth most common cause of death

 According to the Institute of Medicine in the United States

 • More than 70% of these preventable deaths are due to lack of communication and teamwork
 • Healthcare is a decade behind other high risk industries in its ensuring basic safety
Introduction

- Over two billion medical x-rays are taken each year in the United States (Bos, Blobel, Marsh, & Carroll, 2008)
- Diagnostic errors leading to patient death include errors in:
 - Requests
 - Image acquisition
 - Radiologic reports
 - Communication to the treating team
- Ensuring the competency of each technologist is essential
 - Patient Assessment and patient history
 - Selection of proper technical factors
 - Radiation safety
 - Proper positioning
 - Patient Care & Safety
 - Infection Control

Problem may lie more in education than practice!!

Traditional Education

- Limited experience of managing rare events
- Ethical considerations of using patients for learning
- Current environment makes it difficult to discuss and learn from mistakes
- Limits opportunities to practice and acquire proficiency of skills in procedures
- Lectures to disseminate information and assess through written or multiple-choice examinations.
Slide 7

Simulation Enhanced Education

- Replace or amplify real experiences with guided experiences that evoke or replicate the real world in a fully interactive manner (Gaba, 2004).
- Provides opportunities for students to integrate their knowledge and skills in a safe learning environment without fear of causing peril to a patient (Bandali et al., 2008).
- Can be used to assess performance and competency in all disciplines of health care (Gaba, 2004; Panaretos and Meryon, 2005; Bandali et al., 2008).
- Although simulation cannot replace clinical internships, it does allow students to better understand conceptual relations and perfect basic skills (Gaba, 2004).

Slide 8

Simulation Enhanced Education & Self-efficacy

- Simulation is the most effective method to significantly improve self-efficacy (Tompson and Dass, 2000).
- Increased the student’s level of self-confidence resulting in increased interest, perseverance, willingness to exert effort, and task performance (Jarzemsky and McGrath, 2008; Pike and O'Donnell, 2010).
- Increased overall self-efficacy and confidence through mastery experiences (Goldenberg et al., 2005; Chan et al., 2005; Jarzemsky and McGrath, 2008; Pike and O'Donnell, 2010).
- Enhance learner self-efficacy resulting in improved clinical competence and result in a higher quality of care (Bandura, 1986, 1997; Pike & O'Donnell, 2010).
- The quality of the simulation planning directly affects the perception of self-efficacy (Pike and O'Donnell, 2010; Schieman, 2011).

Slide 9

Simulation Enhanced Education & Critical Thinking Skills

- Simulation has been an increasingly used strategy to promote critical thinking skills and has become a primary teaching strategy to develop critical thinking, learning, and confidence (Bruce et al., 2007; Rush et al., 2008; Kaddoura, 2010; Schubert, 2012).
- Incorporate scenarios and case studies promoting the use of critical thinking to make sound clinical decisions to improve patient outcomes. (Rush et al., 2008; Kaddoura, 2010).
- A specific simulation activity proven to build critical thinking skills is role-play.
- Simulation was found to be an effective teaching tool in enhancing knowledge and critical thinking in many competencies (Bruce et al., 2007; Turner et al., 2008; Shubert, 2012).
Slide 10

Purpose of the Study

Compare radiographers’ perception of their self-efficacy, critical thinking skills on image evaluation, and critical thinking skills on patient assessment, by level of simulation training received as a student and its relationship to clinical competence.

Slide 11

Clinical Competence in Radiography

- Patient Assessment and Management
- Room Preparation
- Equipment Operation
- Technique Selection
- Positioning Skills
- Radiologic Operation
- Image Processing and Evaluation
- Radiation Safety
- Receiving and Storing

Slide 12

Subjects and Setting

- Random sample of certified radiographers located in the United States of America
- Successfully passed their ARRT Radiography certification examination within the last two years
Slide 13

Instrument

- Part I – Demographics
- Part II – Simulation Training Rubric
- Part III – 5-Point Scale – Critical Thinking (Assessment and Evaluation), and Self-Efficacy (General and Radiographer)
- Part IV – Scenario Questions – Clinical Competence

Slide 14

Research Question

How do radiographers who receive different levels of simulation training in their program of study compare in their perceptions of self-efficacy, critical thinking skills in image evaluation, critical thinking skills in patient assessment, clinical competence, and self-reported ARRT radiography examination score?

Slide 15

Results

<table>
<thead>
<tr>
<th></th>
<th>Source of Variation</th>
<th>df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Efficacy</td>
<td>Between Groups</td>
<td>3</td>
<td>295.91</td>
<td>98.64</td>
<td>5.38</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>173</td>
<td>3171.59</td>
<td>18.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>176</td>
<td>3467.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Thinking Skills</td>
<td>Between Groups</td>
<td>3</td>
<td>169.96</td>
<td>56.65</td>
<td>6.18</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>171</td>
<td>1567.76</td>
<td>9.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>174</td>
<td>1737.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Thinking Skills</td>
<td>Between Groups</td>
<td>3</td>
<td>541.14</td>
<td>180.38</td>
<td>14.28</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>168</td>
<td>2122.37</td>
<td>12.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>171</td>
<td>2663.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Competence</td>
<td>Between Groups</td>
<td>3</td>
<td>12.47</td>
<td>4.16</td>
<td>1.54</td>
<td>.207</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>171</td>
<td>462.36</td>
<td>2.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>174</td>
<td>474.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRT Radiography Exam</td>
<td>Between Groups</td>
<td>3</td>
<td>74.84</td>
<td>24.95</td>
<td>.81</td>
<td>.492</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>168</td>
<td>5199.83</td>
<td>30.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>171</td>
<td>5274.67</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slide 16

<table>
<thead>
<tr>
<th>Level of Simulation</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Assessment</td>
<td>66</td>
<td>103</td>
<td>80</td>
<td>88</td>
</tr>
<tr>
<td>Image Evaluation</td>
<td>97</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Critical Thinking Skills in Patient Evaluation</td>
<td>62</td>
<td>142</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Clinical Competence</td>
<td>42</td>
<td>132</td>
<td>113</td>
<td>113</td>
</tr>
</tbody>
</table>

Slide 17

Results

Assessments for self-efficacy and critical thinking skills in image evaluation by level of simulation:

<table>
<thead>
<tr>
<th>Level of Simulation</th>
<th>Self</th>
<th>Dependent Variable</th>
<th>Post Hoc Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>66</td>
<td>103</td>
<td>Moderate</td>
</tr>
<tr>
<td>Moderate</td>
<td>97</td>
<td>97</td>
<td>None</td>
</tr>
<tr>
<td>High</td>
<td>66</td>
<td>103</td>
<td>None</td>
</tr>
</tbody>
</table>

Slide 18

Strengths and Weaknesses

<table>
<thead>
<tr>
<th>Level of Simulation</th>
<th>Weaknesses</th>
<th>Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>None</td>
<td>66, 103</td>
</tr>
<tr>
<td>Moderate</td>
<td>97, 97</td>
<td>62, 142</td>
</tr>
<tr>
<td>High</td>
<td>42, 132</td>
<td>113, 113</td>
</tr>
</tbody>
</table>

Slide 19

Weaknesses by Simulation Level

<table>
<thead>
<tr>
<th>Competency</th>
<th>No Simulation</th>
<th>Low Simulation</th>
<th>Moderate Simulation</th>
<th>High Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IE</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

PA = Patient Assessment
RP = Radiation Protection
PM = Patient Management
EO = Equipment Operation
TS = Technique Selection
PS = Positioning Skills
RS = Radiation Safety
IP = Image Processing
IE = Image Evaluation

Slide 20

Limitations

- Population of this study is considered competent.
- Study did not include students enrolled in programs that did not achieve certification and licensure.
- All participants had clinical training in hospitals and imaging centers that may have affected their level of competence.
- Competence was measured by multiple choice scenarios and the ARRT radiography examination, not actual performance.
- Geographic location of each participant is unknown.

Slide 21

Use of Simulation: Innovative Learning Strategy

- Standardized patient simulation
 - Used of actors to play the role of patient, family members, and members of the clinical team.
 - Used for basic training, increasing compassionate skills, general team, and interprofessional training.

- Live simulation with high-fidelity simulators
 - Used for skill training, decision making, communication and reflection on professional behaviors.

- PACS Simulator
 - Used to manipulate the Picture, Archiving and Communication system.
 - Used for sending, storing, printing, sharing information.

- Technique / Task based simulation
 - Basic Positioning, Radiation Safety, Patient Safety, Tumor
 - Calcium Arterial, Diameter of Contrast
 - Exit Image Using for better formats for printing.
Slide 22

It's not about the simulator.

- The power of individual or team training in a simulation environment lies in the integration of validated educational methods into the real simulation experience (Dunn, 2008).

Slide 23

Debriefing

- Key component in the learning process—Feedback
- Most learners feel that inadequate feedback is provided during educational training.
- Without feedback, poor performance is not corrected, appropriate behavior is not reinforced, and learners develop their own system of self-validation.

Slide 24

Establishing a Simulation Center

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Integrated and/or Free-Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anticipate the volume and nature of programs</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th>AV system for video debriefing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internet Access</td>
</tr>
<tr>
<td></td>
<td>Telephones</td>
</tr>
<tr>
<td></td>
<td>IT Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Matched to program needs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human Patient Simulators</td>
</tr>
<tr>
<td></td>
<td>Part-task Trainers</td>
</tr>
<tr>
<td></td>
<td>Virtual Reality</td>
</tr>
<tr>
<td></td>
<td>Warranty and Service Contracts</td>
</tr>
</tbody>
</table>
Establishing a Simulation Center

Faculty and Staff
- Educators
- Subject Matter Experts

Built around ensuring competence and ongoing development
Established standards and road map for the design of activity

Establishing a Simulation Activity

1. Simulation environment setup
2. Simulation device programming or preparation
3. Educator and/or facilitator preparation
4. Clear objectives of activity
5. Learning outcomes and assessment methodology
6. Briefing methods
7. Debriefing methods
8. Reflection Exercises

Remember:
- Learner-centric environment
- Experiential, emotionally engaging activity
- Enhance learning and discovery through debriefing and reflection
- Must emphasize learning outcomes
- Must stress teamwork and communication

Slide 27

QUESTIONS

danken

thank you

gracias

Obrigado

merci